
AD-AO92 192 pITTSBURGH UNIV PA DEPT OF MATHEMATICS AND STATISTICS F/6 12/1

ASSESSING RISKS THROUGH THE DETERMINATION OF RARE EVENT PROBASI--EvC(U)
I 80 A R SAMPSON, R L SMITH F 9620179-C-0161

UNCLASSIFIED T-80-9 AFOSR-TRA80IS NL

EEEHEE



111 1 40 12.8 12-

11111.2 .9UI lllllu8

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURLAU Of STANDARDS I963 A



4k 'A R R 8M1--6- 2. V CCErp .0 .1. RCIPIENT'S CATALOG NUMBER

TITLE(andSubttle) TYP QERIOD C OVERED

MSSESSING j$1 sKs THROUGH THIE DEIERMINATION OF J Interim A-'
WAE WVE-TROBABILIIS,-

7. AUTHOR(s) S.-rNTA..-RX8

Allan R./Samnpson *WRobert L.frith. F49520--79-"-0'61

&~9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
VDAREA & WORK U NIT N4UMBERS

"C University of Pittsburgh
Department of Mathematics and Statistis 611O2FJ
Pittsburgh,PA__15260 (114,1 , r/ _______

. CONTROLLING OFFICE NAME AND ADDRESS 12IEOTbf
Air Force Office of Scientific Research
Boiling AFB, Washington, DC 20332 3 NO M K F -XI j

14. MONITORING AGENCY NAME & ADDRESS(it different from Controlling Office) IS. SECURITY CLAS.(fti WVT

UNCLASSIFIED
158. DECL ASSI FICATI ON/ DOWNGiRADING,

4t SCHEDULE

S16. DISTRIBUTION STATEMENT (of this Report) ;A

FF.l

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary anid identiffy by block number)

risk assessment, information theory, merging opinions, rare events, 1
Frechet bounds, LN1G tanker spills, nuclear reactor safety

0 AB8STRACT (Continue on reverse side if necessasry and identity by block number)

0.., We consider the problem in risk assessment of evaluating the probalility .O of occurrence of rare, but potentially castastrophic, eventts. The lack of
C) historical data due to the sheer novelty of the event make conventional

statistical approaches inappropriate. The problem is caJ ed by theha complex miultivariate dependiencies that may exist across toential event __

sites. In order to evaluate the likelihood of one or more such catastrophic
Lis events occuring, w provide an information theoretic model fcr merging a

DD JA 1473 EDITION OF INV5I UOEEUCASFE /
SECURITY CLASSIFICATION OF THIS PAGE (When Des Enter"E)



SECURITY CLASSIFICATION OF THIS P

decision maker's opinion with expert judgment. Also provided is a
methodology for the reconciling of conflicting expert judgments. This
merging approach is invariant ot the decision maker's viewpoint in the
limiting case of exceptionally rare events. These methods are applied
to case studies in likelihood assessment of Liquid Natural Gas tanker
spills and seismic induced light water nuclear reactor meltdowns.

- I-

rrow

• I

i7

..

UNCLASSIFIED
SECURtITY CLASSIFICATION OF Tu-1 PAGE(When Daet Ent*ed)



AFOSR-TR. 80 1165
J

Assessing Risks Through the Determination of
Rare Event Probabilities

Allan R. Sampson

and

Robert L. Smith

Department of Mathematics and Statistics ,or

University of Pittsburgh XTIS G,,-I
M C TAB

and Unann .uc- d
Jt if icbti.L ?

Graduate School of Business

University of Pittsburgh By

July 1980 -- " °'
Av ail and/or

Technical Report No. 80-9 IL

180 if 0a 030
The work of this author is sponsored by the Air Force Office of Scientific
Resparch, Air Force Systems Command-under Contract F49620-79-C-0161.
Reproduction in whole or in part is permitted for any purposes of the

United States Gnvernmpnt.

jApproved for public rplev- ?'
. distribution u l ilrit !.



4IR FORCE OFFICE OF SCIENTIFIC RRUARCH (AISC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is
approved for p iblic release IAW APR 190-12 (7b).

Distribution is unlimited.
A. D. BLOSE
reohnioal Inforwrtion Offtior



Assessing Risks Through the Determination of

Rare Event Probabilities

by

Allan R. Sampson and Robert L. Smith

Abstract

We consider the problem in risk assessment of evaluating the

probability of occurrence of rare, but potentially catastrophic,

events. The lack of historical data due to the sheer novelty of

the event makes conventional statistical approaches inappropriate.

The problem is compounded by the complex multivariate dependencies

that may exist across potential event sites. In order to evaluate

the likelihood of one or more such catastrophic events occuring, we

provide an information theoretic model for merging a decision maker's

opinion with expert judgment. Also provided is a methodology for

the reconciling of conflicting expert judgments. This merging approach

is invariant to the decision maker's viewpoint in the limiting case

of exceptionally rare events. These methods are applied to case

studies in likelihood assessment of Liquid Natural Gas tanker spills

and seismic induced light water nuclear reactor meltdowns.

KEY WORDS: risk assessment, information theory, merging opinions,
rare events, Fr~chdt bounds, LNG tanker spills, nuclear reactor
safety.



Assessing Risks Through the Determination of

Rare Event Probabilities

by

Allan R. Sampson* and Robert L. Smith

1. INTRODUCTION

In an increasingly complex and technological world, method-

ologies for dealing with risk assessment have taken on new impor-

tance. The scale and power of technology have created the

potentiality for the occurrence of truly catastrophic events. These

include, but are not limited to, LNG (liquid natural gas) tanker

explosions, serious nuclear reactor accidents, recombinant DNA

accidents, and nuclear weapons accidents. Nevertheless, the more

remote the likelihood of such an occurrence, the less apprehensive

we are, until some threshold probability PT is reached below which

we become indifferent. This threshold value of course depends

heavily on the seriousness of the consequences were the event to

occur. Risk assessment therefore can be viewed as a two-fold process

comprising i) the assessment of the likelihood of an undesireable

event occurring (risk determination, see Rowe (1977)), and ii) the

valuation of the consequences to the risk taker were that event to

occur (risk evaluation, see Rowe). Our focus in this paper is on

the first problem of risk determination.

Risk determination is a particularly difficult task because of

the sheer novelty of the event of concern. neing catastrophic, it

is almost certainly a rare event, and moreover may never have histor-

ically occurred. This lack of historical statistical data makes it

*The work of this author is sponsored in part by the Office of Scien-
tific Research, Air Force Systems Command under contract P49620-79-
-C-0161. Reproduction in whole or in part is permitteol for any pur-
poses of the United States Government.
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difficult, if not impossible, to use conventional data analysis to

assess the likelihood of the event's occurrence. We are in a situa-

tion of formulating a probability model, where the model must be

based on limited structural information. Concerning these concepts

in assessing nuclear reactor safety, Lewis (1980) writes that

"a reactor accident with public consequences is demon-
strably an extremely improbable event for which there is
no actuarial record. When any event, such as a putative
reactor accident, has a very low probability, but poten-
tially severe consequences, it means that safety analysis
must be based on theoretical calculations rather than on
experience and this leads to special problems."

The decision maker (who must ultimately make the determination as

to how "safe" the relevant technology or system is) is prototypically

confronted with probability judgments from one or more experts, often

in conflict with his own personal assessment as well as with each

other. The term "experts" is used generically to denote individuals,

commissions, study groups, etc. The decision maker's task is to

reconcile the conflicts and merge the opinions in a responsible and

consistent fashion. The probability assessment (or range of assess-

ments) thus synthesized may be compared with the threshold proba-

bility value and a decision may be reached as to whether or not

action is warranted.

We propose in this paper a methodology thaLtwill provide for

a consistent merging of the decision maker's opinions with expert

judgments as to the event's likelihood. We show that for rare

events, the model provides for lt order agreement as to the event's

likelihood no matter what the initial views of the decision maker.

Further, the model leads to a sensible procedure for reconciling,

merging, and updating differing expert judgments.
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Consider now two case studies in risk assessment. The first

case will later illustrate the merging of a decision maker's view-

point with expert judgment, and the second will illustrate the

model's procedure for reconciling differing expert opinions.

Case Study 1 (LNG Tanker Movement)

The possibility of a large spill of LNG (Liquid Natural Gas)

in a harbor due to a tanker collision is a potential hazard of

considerable concern. It is widely held that such an occurrence

could result in a catastrophic conflagration whose consequences are

of the same order of magnitude in lives and property as a major

accident at a nuclear power plant. It is therefore essential to

obtain estimates of the likelihood of such an event occuring.

In 1974, the Federal Power Commission requested a report by

independent consultants as to the risk posed by proposed LNG Tanker

movement in the New York harbor. Table 1 (taken from Fairley (1977))

represents a summary of the central findings of that report. The
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1
report generated two summary figures. The p = 4,664,179 figure

represents the probability that an undesireable LNG event occurs on

a single (typical) trip. The number is clearly an average proba-

bility over the various trips one could expect over the 10 year
_1

horizon time. The Commission interpreted the " = 3746 figure as

the probability of at least one undesireable LNG event over the 10

year horizon. In fact, this figure is the expected number of such

events and only corresponds to the approximate probability of such

an event when the number of such events follows a Poisson probability

law. No justification is apparent for such an assumption. The

risk probability of 1 was deemed by the Federal Power Commission3746

as low enough so that the proposed LNG tanker and barge movement

posed an acceptable risk.

Case Study 2: (Seismic Safety of Nuclear Reactors)

There are approximately 100 light water nuclear reactors cur-

rently operational around the United States. One of the environ-

mental hazards potentially leading to a core meltdown is severe

seismic activity (earthquakes exceeding 0.2g ground acceleration).

In 1974, the U.S. Nuclear Regulatory Commission commissioned a study

to quantitatively assess nuclear reactor risks; this included study-

ing the effects of earthquakes. The report generated by that study

is known as WASH-1400 or, more informally, the Rasmussen report (see

U.S. Nuclear Regulatory Commission (1975)). The NRC concluded that

earthquake risk was negligibly small compared to other reactor acci-

dent risks. Table 2 summarizes the data and analysis that supported

this conclusion.

Three levels of earthquake severity were considered and the

resulting overall probability p of core meltdown over a given year
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Table 2. Summary of U.S. NRC Report on Probability of Core

Melt Due to Earthquake for an Average Site in the Eastern U.S.

Ground Earthquake Prob. of damage Core melt prob.
acceleration prob. per year per reactor year

0.2g 7 x 10- 4  3 x 10- 5  2.1 x 10- 8

0.5g 5 x 10- 5  3 x 10- 3  1.5 x 10- 7

1.0g 1 x 10- 5  3 x 10- 2 3 x 10- 7

-7
Overall core melt probability per reactor year 4.7 x 10

at an average (typical) site was computed. The figure arrived at

by the Commission was p = 4.7 x 10- 7 . A project sponsored by the

National Science Foundation and under the Directorship of David

Okrent (1977, Chapter 9) considered the same problem and arrived

at an alternative probability of p' = 8 x 10- 5 (assuming minimal

or no reactor design errors). This project study differed primarily

in its explicit consideration of alternative failure modes leading

to core meltdown. This represents a particularly vexing situation

for the decision maker who must decide whether or not the risk is

acceptable when confronted by conflicting expert opinion. The ques-

tion arises as how to "average" the two judgments for p. Moreover,

how does the decision maker include his personal viewpoint into the

reconcilation process?

A number of issues concerning risk assessment are considered in

this paper. In Section 2, the general probabilistic structure for

evaluating site dependencies is discussed. An information theoretic

model is introduced in Section 3; and in Section 4, this model is used

for reconciling and updating several expert judgments. A brief



6

discussion of some computational aspects is given in Section 5.

Applications of these results to the two Case Studies are considered

throughout. Proofs and certain technical material can be found in

Appendices A, B, C and D.

2. RISK DETERMINATION WITH SITE DEPENDENCIES

2.1 Relating Risk Determination to Site Occurrences

In this section, we consider a general model applicable for a

wide variety of risk determination problems.

Suppose we are interested in assessing the likelihood of an

event E which may or may not occur at one or more of M sites. Site

is here a generic term that may refer to components within a sub-

system, or subsystems within a system, or literally geographical

site locations for facilities. It is assumed that E is sufficiently

rare that the possibility of two or more occurrences at a single

site over the horizon time of interest can be effectively ignored.

Let IF = 1, or 0, according to whether, or not, E occurs at site j, so

that ', ... 4M constitute a complete specification of the outcome

of the event process. The event E is regarded as catastrophic were

it to occur even once; therefore, our attention is directed to the

random variable X denoting the number of occurrences of E. Our

interest is in obtaining the probability Pc of a catastrophic event,
M

where P c P(X > 1). Note that X T Y.. Since X can be expressed
c -j=l 3

in terms of TV ... #M'W P c is readily obtainable once the multi-

variate distribution of Yi' ... ' Y M is known. If 'p ... ' M were

independent, they would constitute so-called Poisson trials (Feller

(1968, p. 218)) and it is not difficult to show that Pc -1
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M
where p = w. is the expectr'd number of occurrences of E over the

j=1 3
M sites and a. 2 P(I. = 1) is the probability of an occurrence of E3 3

at site j, j = 1, ... , M. Moreover, for fixed p (see Feller (1968,

p. 282))

(2.1) lim PC = 1 -e

Equation (2.1), therefore, gives P in terms of the expected number

of occurrences of E, when E is rare, the number of sites is large,

and the occurrences are independent across sites.

Unfortunately, the site independence assumption is in most cases

not warranted. Commonality of components, facility design, and

operational procedures introduces significant dependencies across

sites that can not be disregarded. In short, T'. Y2 ' ... 'M are

typically dependent random variables. (See Appendix A for a tech-

nical discussion of this point.) In this case, ri p2' "' - M

do not uniquely define the multivariate distribution of Ti' "'''

T M" One must in fact specify the probabilities for all possible

values that i' ... ' may jointly assume, i.e., for all binary

M-vectors. For example, for M = 100 light water reactor sites, the

100number of distinct probability values required is 2 Clearly,

the task of specifying a multivariate distribution for '1, ... ' M

is impractical in the absence of underlying structural models for

the dependencies involved. However, modeling dependency in complex

environments such as the ones being considered is currently beyond

the state of the art. On the other hand, obtaining reliable judg-

ments concerning each of the marginal distributions of the T'V, or

equivalently, of the w. is certainly reasonable. (Event tree and
3
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fault tree analysis are very effective tools in this regard. See

Barlow and Proschan (1975, pp. 255-274) for a thorough discussion

of these techniques.)

2.2 Risk Probability Bounds and Expert Judgment

Specification of the marginal probabilities 71, W 2, ..., 7M

constrains the multivariate probability distribution over i' 1
2

... IPM and, therefore, limits the possible multivariate distribu-

tions. These constraints in turn give rise to a range of possible

values of Pc . If this interval covers the indifference probability,

there is uncertainty as to whether or not the potential for cata-

strophe should be of concern. If, however, the interval lies

entirely below the critical value or entirely above the critical

value, then we have an unequivocal answer as to where the actual

probability of catastrophe P lies relative to the threshold proba-
c

bility PTI

Given 1, T2, ... I 7TM, upper and lower bounds for Pc can be

derived from the multivariate Frechet-Hoeffding bounds for multi-

variate c.d.f.'s (e.g., Dall'Aglio (1972)). (See Appendix A for

the derivation.) These bounds are

M
(2.2) max ff. < P < min( E w.,l).l<i<M i - i=l

M
For F it. < 1, these bounds are attainable, i.e., there exist actuali=i i -

site dependencies with the noted marginal probabilities giving rise

to each Pc in the interval of (2.2). Note that not all of the infor-

mation in the values T1, 72P ., itM is utilized in constructing

these upper and lower bounds. In particular, we need to know only

their sum and their largest value.
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Now suppose that we wish to construct bounds for P, where thec

only information available concerning the marginal probabilitiesM

is that we are given p = M -  ni, which is the site average proba-
i=l

bility of E occurring at a typical (randomly selected) site. Among
M

the class of all multivariate c.d.f.'s with E Prob(. = i) = Mp,
i=l 1

the following tight bounds can be obtained for P
c

(2.3) P < Pc< Mp.

Note that the upper bounds of (2.2) and (2.3) are the same while

the lower bounds differ. Usually, it is the upper bound on Pc that

..q of interest, the expectation being that this upper bound will be

below the threshold probability; in this situation fi, IT2, -... M
-*1

provide no additional information beyond that provided by M.
5=1

Equation (2.3) requires a valuation of p, the probability tha t

Z occurs at a typical site, and M, the number of sites. This form

of expert judgment as model input is natural and quite mini-

mal in its demands on the expert. For example, Lewis notes that

the Rasmussen report concerning light water reactor safety focused

on "one typical ... reactor." Again note that it is not necessary

to know anything about the possible dependencies over the sites to

-_ M
specify p and M, since p = M Z it. is only a function of the marginal

i=l 1

distributions over the sites. It will later be useful for technical

reasons to have the expert judgment re-expressed in terms of 1J = EX,

the mean number of occurrences of E over all sites. Note that

M M M M
= E Z = E ET. = E P(Tj = 1) = ET. = Mpj=l I j=l I j=l j=l j

regardless of the multivariate distribution of T'V.. M M Hence,

(2.3) may be rewritten in terms of p, without imposing any additional
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assumptions, as the followinq

(2.4) M-10 < P <

Accordingly, a specification of the value of p will formally be

referred to hereafter as the expert judgment. Also, because the

upper bound in (2.4) is informative only when W < 1, we will define

E as a rare event whenever i < 1, i.e., whenever expert judgment is

that it is "not expected to occur."

Equation (2.4) expresses the range of possible probabilities

Pc consistent with a given specification for V. Of course, there

may be considerable uncertainty surrounding the valuation of

p and hence U. It is useful, therefore, to invert (2.4) to find

what range of values of P lead to Pc > and Pc -- TP respectively.

The corresponding lower and upper bounds for p are given by the

following relations

P > P if '> V (PT) H M P(2.5) c- T - T T

P < P if 11 < U(P ) PPC- T -- T T

Alternatively, one may ask what range of values of v is consistent

(in the sense of satisfying (2.4)) with a given value for Pc. It

follows directly from (2.5) that the interval of consistent values

of P is

(2.6) (P c) < 1 < V(Pc

The bounds of equation (2.6) may be viewed as providing a sensitivity

analysis for Pc in terms of allowable values of V. In other words,

as long as the perceived uncertainty in the true value of v lies
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within the bounds given by (2.6), there is no logical inconsistency

in adopting the value Pc as the probability of catastrophe.

2.3 Consistency Analysis for LNG Tanker Movements

In a critique of the study concerning the safety of LNG tanker

movements, Fairley (1977) notes that the probabilities of most

factors could possibly be upwardly corrected. The upward correc-

tions are summarized in the following table taken from Fairley (1974,

p. 344).

Table 3. Possible Correction Factors for

LNG Tanker Movement Probabilities

Possible upward cor-
rection factor for

Source of error estimate (Multiplv
Factor Symbol or uncertainty times original nsti-

in estimate mated probabilities

in Table 1.).

B Reporting error 2 - 5

Extrapolation to 2 - 5
., VOC .CO

1 
F,

C Spc-lc 'ivl v 5

D tnih-ni ~'2+

E 1ef.n5Iona! 1.5

G S c a t. v 5
], c o .',--.im P ,et.e

The use of these correction factors (multiplrs of 16 and 2 were

used for factors B and D, respectively) woul¢ rnward.y adjust the

p from A,66A,]79 to 3,8n? This, in turn, u,3ino the original

study methodology would change oth p an , from to 3.1 i
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appears that this aspect of the critique focuses on possible changes

in ii and not on the methodology for obtaining Pc from Ii. Based on
C

a consistency analysis (employinq (2.6)) for Pc = 346 ' we can

see that any v in the interval ,6could give rise to the
3,746 ' .)

noted P o3,746 through use of alternative probability models.
1

Clearly p =1 falls in this interval. This analysis then suggests

that model selection (or equivalently, as discussed in Section 3,

the decision maker's viewpoint) is at least as important as obtain-

ing an expert's judgment that is reliable.

2.4 Risk Determination and the Decision Maker's Viewpoint

As discussed, the various bounds presented will in

some cases unequivocally decide the issue of acceptable risk. How-

ever, when the range of uncertainty in true Pc given by (2.4) covers

the threshold value PT' we must look to a more detailed model to

arrive at a risk determination. The expert judgment, o, cannot by

itself resolve the issue, and it is at this point that the viewpoint

of the decision maker must be taken into account. The decision

maker retains ultimate responsibility and is not allowed the luxury

of being noncommittal. We model his viewpoint about the number of

potential occurrences of E by his assessment of the probability dis-

tribution governing X. The decision maker's viewpoint will accord-

ingly be represented by a (M+l)-vector p where pi equals the decision

maker's probability that there will be i occurrences of E. Simple

and effective procedures for eliciting such subjective probability

distributions exist and are well documented in the literature (see

Raiffa (1968)). The viewpoint of the decision maker thus elicited
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Prior to having the expert judgment available, the decision maker's

"initial assessment" of Pc was I - P0"

It is illustrative to examine this in the simple case when M

= 2 using baricentric coordinates.

Figure 3.1

Adjusting Viewpoints Based Upon Expert Judgment (M = 2)

(1,0,0)

I PC

I Expert Judgment Space: SU

t. - - - - Adjusted Viewpoint: pA

"Initial Assess nt"
of P

Decision Maker'sSviewpoint: p

(0,1,0) (0,0,1)

Based upon the initial viewpoint of the decision maker, there is

an initial value of P c By "moving" the decision maker's viewpoint

as little as possible and yet conforming with expert judgment, an

adjusted viewpoint p is obtained with the corresponding "new"

value for Pc.

Within the statistical literature there are a number of possible

measures for distances between probability vectors (e.g., Rao (1965,

pp. 288-289)). One measure of closeness that has been widely employed

is the Kullback-Liebler discriminator I(a;b) between two probability

vectors a = (al, ..., aM ) and b = (b1, ... , b M), where
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erenno in surprise he-t,.7ien viewpoints p ve-rsuis q if in fc-ct i-he truen
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probability distribution is q. There is accordingly an inherent

asymmetry between p and q in the separation measure I(p,q) where

q assumes the role of the "true" probability distribution.

Note that this interpretation supports the approach of choosing an

adjusted viewpoint from those q consistent with expert judgment

which moreover minimizes I(q,p), i.e., that q generates the least

expected difference in surprise over the initial viewpoint p.

Sampson and Smith have applied this mo3ol to the criminalistics

problem of assessing the weight of circumstantial evidence linking

a suspect with the perpetrator of a crime. A number of results

obtained there are also relevant to our problem of assessing Pc

We now paraphrase and summarize these results in the risk determina-

tion context; for a formal treatment see Sampson and Smith.

Definition 3.1. A family of distributions p(i,T), - < T < -, on

the integers 0, ..., M is a finite exponential family of distribu-

tions with parameter T, if for every T

Tip(i,T) = c(T)hje , i = 0, ... , M,
M

where ho = h , h > 0, ..., hM > 0, and c(T) ( h.e
j=0 3

(Choosing h0  h1 = 1 basically fixes scale and location origins

for the family.)

Result 3.1. (a) Every probability distribution p = (p0 "'' PM )

on 0, ... , M with pi , 0 belongs to exactly one finite exponential

family of distributions.

(b) Within a given finite exponential family of dis-

tributions every member distribution is uniquely indexed by the
M

parameter T and also by P(T) Z [i c(T)hie T1

i=0
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Thus every finite exponential family of distributions can be

viewed as a one-dimensional curve in the M-dimensional simplex of

probability distributions. These curves never intersect and are

also space filling in the sense that every point in the interior

of the simplex lies on exactly one such curve.

Consider the decision maker's viewpoint p = (p0, ... , pm ) .

By Result 3.1 (a), there is a unique finite exponential family

C.(T)h~e -O < T < -, such that p = c*(T 0 )he , i = 0, ... , M;

i.e., p is that point on the curve indexed by T =T

Result 3.2. Based upon the expert judgment that EX = ', the adjusted

A Tiviewpoint p can be found by choosing that member of c*(T)hte
% M

such that E [i c*(T)he T i] =.
i=O 1 A

Intuitively Result 3.2 states that p can be found by tracing

the finite exponential family distribution curve containing p until

that curve intersects S . Specifically, the point of intersection

A
is p

Again it is illustrative to examine the probabilistic geometry

for the case M = 2, using baricentric coordinates.

Figure 3.2

Finding Adjusted Viewpoints (M = 2)

(i,0,0)

PC~ -Expert Judgment Space: $w

Adjusted Viewpoint:

Finite Exponential Fam~ily
Distribution Curve

Containing p

Decision Maker's
'iewpoint p

t0, 1,0) (0,0,i)
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Ti
It is direct to show that (a) lir c(T)h.e = 1, if i = 0,

1

and = 0, otherwise; (b) lim c(T)h.eTi = 0, if i < M, and = 1, if
1

i = M. Thus in terms of Figure 3.2 as T varies from -- to -, the

corresponding point on the finite exponential family curve traverses

from top to lower right bottom. It is visually obvious and

analytically easy to show that Pc is monotone increasing in T. In

fact, however, a stronger result may be stated. Let F(k,T) =

E c(T)h.e be the c.d.f. of the number of catastrophic events at
i<k 1

the M sites. Then in Appendix B, we show that for all k, F(k,T) is

decreasing in increasing T. This is equivalent to saying that the

probability of more than k catastrophes increases as T increases and

decreases as T decreases. Thus two different probability vectors

on the same finite exponential family curve represent two stochasti-

cally ordered views of the likelihoods of catastrophic events, with

the viewpoint for a smaller T corresponding to a belief that the

likelihood of k or less catastrophic events is larger than for a

viewpoint with a larger T. Also in Appendix B, we show that the

mapping taking the initial decision maker's viewpoint p to the

A
adjusted viewpoint p is continuous so that small variations

in the initial viewpoint lead to small variations in the adjusted

viewpoint.

Clearly within the model the determination of Pc is dependent

upon the value of P. However, it is reasonable to expect that

as the expert judgment becomes compelling concerning the unlikelihood

of a catastrophic event, that is, as p - 0, one would find that the

initial decision maker's viewpoint becomes increasingly less impor-

tant in determining Pc" As noted in (2.4), a priori bounds for Pc

- a
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are M- < P< " In fact for M =2 these bounds correspond in

Figure 3.2 to the values of P determined, respectively, by the

points where the "right-hand" and "left-hand" sides of S intersect

the boundary of the simplex. Thus, as p - 0, these bounds converge

th
to 0, demonstrating 0- order agreement in P c based upon different

viewpoints. More importantly, Sampson and Smith show that this

model provides is order agreement.

Result 3.3. Let p1 and P2 be two different viewpoints and denote

1 an 2j r
by Pc(p) and P2(1) the respective probabilities of a catastrophic

event based upon expert judgment that EX = j. Then P 1() = p2 () +
c C

oUp) = p + o(p), where lim o )= 0.p4-0

3.2 Risk Determination for LNG Tanker Movement

The focus in this case is on obtaining the probability of one

or more LNG tanker spills in the New York harbor over a 10 year

horizon. The generic term "site" in this context becomes tanker

trip, while "catastrophic event" corresponds to an LNG spill. The

expert judgment based on the Federal Power Commissions report is
1

that there is an expected total number of LNG spills of p = 3,746

with a probability of a spill on any one tanker trip of 1
4,664,179

(from Table 1). With a total of M = 1245 trips over the 10 year

horizon, inequality (2.4) provides upper and lower bounds on the

probability of one or more LNG spills P c as

- 7 -42.4 x 10 < P < 2.67 x 10C

That is, each of the probabilities in this interval of values is

consistent with the FPC report. However, because of the small
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magnitude of these bounds, the first order approximation provided

-4by Result 3.3 is appropriate in suggesting the value P 2.67 x 10

Note that this figure is in agreement with that arrived at by the

stFPC. Moreover, this value represents Pc to 1- order regardless

of the initial viewpoint. Thus, two decision makers with differing
1

points of view when presented with p = 1 would agree based
3,746

upon the model that the given figure for Pc is correct to the 121

order.

In order to illustrate the actual adjustment process, suppose

the decision maker's viewpoint can be modeled as p = (.99, .009,

.0009, .00009, .00001, 0., ..., 0.). Thus the decision maker

initially believes that the probability of catastrophe is .01.
1

Based upon expert judgment that p = 3746 = .0002669, the adjusted

viewpoint is pA (.999742, .26 x 10 -  75 x 10 - 6  22 x 10 - 8
-Ii

.70 x 10 , 0., ..., 0.). Hence, based upon the given FPC judgment

for p and the decision maker's hypothetical viewpoint p, the proba-

bility of one or more LNG spills in 1245 trips is 1. - .999742

2.574 x 10-4 .

4. MULTIPLE EXPERT JUDGMENTS

4.1 Updating and Merging

Up to this point, we have considered the case where there is

just one expert judgment available. Now suppose that two judgments

are available to the decision maker. There appears to be two basic

situations in this case. One is where both experts are coequal and

their judgments are to be equally and simultaneously assimilated by

the decision maker in the process of adjusting his initial viewpoint.
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The other basic situation is where the decision maker adjusts his

viewpoint in light of a first expert's judgment and later is con-

fronted with an updated expert judgment to which he must readjust

accordingly. The latter situation is considered first.

Sampson and Smith noted that there are two ways to readjust

the decision maker's viewpoint in light of a superseding expert

judgment. One approach is to discard the viewpoint adjusted to the

first expert's judgment and return to the initial viewpoint; then

the decision maker adjusts in the usual fashion to the second expert

judgment. The other approach is for the decision maker to act as

if the viewpoint adjusted to the first expert judgment is the new

initial decision maker's viewpoint; then the decision maker would

adjust the new viewpoint to take into account the second and super-

seding expert judgment. Sampson and Smith show that based upon the

model, both of these two noted approaches are equivalent.

Now suppose that two coequal experts provide judgments p, and

U2 where it is assumed that p < I2" Based on his viewpoint, the

decision maker must simultaneously merge both experts' judgments in

obtaining the adjusted viewpoint.
A A

Denote the decision maker's viewpoint by p and let p and p2

be the two possible adjusted viewpoints corresponding to P' 1 and 2'

respectively. Let p* denote the decision maker's adjusted viewpoint

where the decision maker in arriving at that viewpoint must merge

the two experts' judgments Pl and v2 . Within the context of the

model and under the assumption of coequal experts, we require

1 2
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that is, the decision maker adopts an adjusted viewpoint which is

equally separated from the viewpoints that would be taken based on

each expert separately. Roughly speaking, p* is "informationally
A A

eauidistant" from p1A and p2"
p2.

Writing p in its finite exponential family form f(i,T 0) , where

Ti A
f(iT) c(T)h , we can by Results 3.1 and 3.2 represent p. by

1M 

f(i,Tj), j = 1, 2, where -r < 2 Let uJ(T) E if(i,T). Without
1 2 i=70

any further constraints on p*, it is shown in Lemma C.l (Appendix

C) that any p* = (P*' ..., p*) satisfying

M
(4.1) E i pi* = E(p(T) ,

i=0

where T is a random variable with uniform distribution on (TIT 2 )
A A

is "informationally equidistant" from p] and p2 Another way nf

viewing (4.1J) is that E(P(T)) is the meraed valu of 11 and 112 C

seen by the decision maker with viewpoint p. Note that the meroec

value of P 1 and p12 is dependent upon the specific viewpoint o the

decision maker.

However, within the context of the model, it is required that

p* be as informationally close as possible to p. Specifica]y, we
A 

I,'
require that p* minimize T(p*;p) subject to T(p*;p ,) = T(p*;p.

In Lemma C.2 (Appendix C), it is shown that p* is given bv f(i,T*),

where T* is determined uniquely by

(4.2) i(t*) = E(1(T)

where T has a uniform distribution on (T 1 ,r 2 ). A graphical pre-

sentation of this process employing baricentric coorOinatos for

the M = 2 case is given in Figure 4.1; and in Figure 4.2, we vi-w

the process for a general distribution graphing P(T) versus T.

L _ .!



Figure 4. 1

Merging Two Coequal Expert Judgments,

Baricentric Representation (M = 2)

- - -(1 °0,0)

P Expert Judgment SU

P '- q: Eiq.=Eu(T))

-JI-- \~.-Expert Judgment S2

2 - 2C t i A ..Finite Exponential Family

T . Decision maker's

Viewpoint

(0, 1,0) (0,,1)

Figure 4.2

Merging Two Coequal Expert Jud ments For

a Given Viewpoint Family

2

J " T

T* T 2
C,
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Intuitively, the result of (4.2) says that the way to merge

1 and t2 is to average the intermediate means by weighting them

uniformly with respect to T along the finite exponential family

curve containing p. Clearly this is different than weighting uni-

formly with respect to the means themselves; such an approach would

yield ("l + P2)/2 as a merged opinion. More specifically, from

Figure 4.2 and (4.2), we are able to see that T* is chosen so that

the shaded area under the P(T) function is equal in area to a rect-

angle whose sides are of length T 2 - T1 and II(T*). Moreover,

depending on where T, and T2 are located relative to the curvature

of P(T), 1j(T*) may be closer to I or to I2" In the case where T

is "moderate" and T is "small," P(T*) tends to be closer to 11

than to V2"

The actual evaluation requires first obtaining T1 and T2 cor-
A A

responding to p1 and p2, respectively. (Several techniques for this

are discussed in Section 5.) Then it can be shown (see Appendix C)

that M
T2 iE i(P0/Pl ) I p i e s i

P( -)-(T - . 2 01 ds,2 M i si

T 1  z (p0/p]) pie
i=0

where p = (p0 ' Pit ..., PM is the decision maker's viewpoint.

4.2 Binomial Viewpoints and Rare Expert Judgments

Two special cases for merging are worth considering further.

One is where the decision maker has a binomial viewpoint and the

other is where v and It are small. Suppose that for some r, pi

is given by (1 )r (l-1)M-i , i = 0, ... , M, and the two experts'

judgments are v1I and 12' In Appendix C, it is shown that p*, the
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merged judgment from the decision maker's viewpoint, can be explic-

itly stated in terms of Pl, P2 and M, as follows:

M 2 M 1P* = M £n[M 2] (9n[l 3 M P2 "

In the second interesting case, we suppose that the expert judgments

ui and V2 are quite small. For this case, it can be shown (see

Appendix C) that

(4.3) * = 2 - i) / -n  2 - n p1i)  + o(max( l, 2)

Incidentally, if the decision maker were allowed to have a Poisson

viewpoint, the exact value for V* would be (P12 - Pl)/(knv 2 - £nul).

Note that if instead we are dealing with p* = p*/M, p(1) = PI/M, and

p (2) =2/M, then (4.3) can be re-expressed as

(4.4) p* (p (2 ) - p(1))/(kn p (2) -n p(1)

Now suppose 1 i = 10-v and 12 = i0 2 where v1 is substantially

larger than v2; then from (4.3), it follows that 11* can be approxi-
- (v 2 +lOgl 0 Vl)

mated by 10

4.3 A p1ications of Merging Judgments

The result of (4.4) can be used to merge rare probability judg-

ments concerning SCRAM failures in nuclear reactors. The SCRAM system

in boiling-water reactors is a system whereby the nuclear chain

reaction in a reactor can be stopped quickly. In the Rasmussen

report, the probability of a SCRAM failure was assessed. Lewis

writes
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"The problem encountered in estimating this probability
is that the SCRAM systems are so important and so well
designed that the event in question (SCRAM failure on
demand) has never happened and therefore there is no
basis in experience from which to assess the reliability
of this system."

Based on two different sets of assumptions, the Rasmussen report

presented two distinctly different probabilities that a typical

(1) -12 (2) -6SCRAM operation fails, namely p = 10 and p = 10-. In an

attempt to combine these rare judgment probabilities, the geometric

average of 10-9 was employed by the Rasmussen report. This proce-

dure for combining these judgments prompted Lewis to comment "there

may somewhere be a statistician who believes that this is a valid

procedure but he has yet to make himself known." An application

(1 -1 (2) -16
of (4.4) to p(1) - 1012 and p = 10 suggests that the combined

p* should be 1.67 x 10 which is a couple of orders of magnitude

less conservative than the Rasmussen report value of 10- 9 . Note

that in the case of rare expert judgments, the value of p* essen-

tially does not depend on the decision maker's viewpoint.

Another application of (4.3) is to merging judgments concerning

the seismic safety of nuclear reactors in Case Study 2. In this

case, P becomes the probability of one or more reactor meltdownsc

during a given year. The sites are literally light water nuclear

reactors. The expert judgment in this case flows from two distinct

sources. The NRC report placed the mean number of meltdowns over

the M = 100 reactor sites at a value of Pl = 4.7 x 10- 5 . On the

other hand, the Okrent study assessed the figure at P2 = 8 x 103.

Noting that these figures are sufficiently small so as to justify

use of a first order approximation, we can merge the two expert

judgments according to (4.3), obtaining p* = 1.55 x 10- 3 . Note
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that the effect of the adjustment process is to give greater weight

to the more conservative figure corresponding to the judgment of

the Okrent study. The ultimate probability figure for Pc will

depend on the initial viewpoint of the decision maker. Again, how-

ever, to first order, the merged value for the probability of one

or more reactor meltdowns due to severe seismic activity is

P t 1.55 x 10 .
c

5. COMPUTATIONAL CONSIDERATIONS

Brockett, Charnes and Cooper (1978) have in essence shown that

the actual derivation of pA from p and P can be viewed as an uncon-

strained convex programming problem. Consequently, standard computer

packages can be employed. Other mathematical techniques that can

be used in the constrained Kullback-Leibler discrimination minimiza-

tion problem can be found in Kullback and Gokhale. In Appendix D,

we give the details for an IMSL (1979) implementation of the Brockett

et al technique.

Another approach that could be used to finding p A is described

in Lemma D.l (Appendix D). Let m(s) be the moment generating func-

tion determined by the decision maker's viewpoint probabilities,
M

i.e., m(s) F F e pi. Let s0 be the unique solution to
i=0

m'(s) - 11m(s) = 0

th A
then the i entry of p is given by

-ii 0 i M -1 T0 j

POP (p 01 p 0P~op-3
j=0

where To = s0 - £n(p 0/pl).
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6. DISCUSSION AND SUMMARY

In this paper we have presented an information theoretic model

that provides a minimum bias approach for the merging of expert

judgment and decision maker's opinion as to the likelihood of rare,

but catastrophic events. In particular, the decision maker evpresscs

his viewpoint concerning the probabilities of various numbers of

catastrophic event occurrences across a number of sites, and the

expert provides his judgment concerning the likelihood of a cata-

strophic event occuring at a typical site. When the expert's judg-

ment is that the likelihood of a catastrophe at a typical site is

remote, we show that decision makers, with different viewpoints,

would still agree (to .st order) concerning the probability of

catastrophe.

Using the basic model, we have developed meaninqful and objec-

tive methods to merge and to update judgments from morn than onn

expert. Approximations are given for meraing of two e> pert jurlg-

ments when the judgments indicate the probabilities of catastrophes

are very small. The results for this rare event mergring are .ncn-

pendent of the decision maker's initial viewpoint.

Several computational approaches suitable for computer imnle-

mentation are discussed.

Lewis wrote concerning "the importance to society of assessina

risk in quantitative terms and of making sound interpretations of

those risks." We believe that our modelling approach provides en

important step toward attaining this important societal goal.



28

Appendix A

SITE DEPENDENCIES AND PROBABILITY BOUNDS

A.1 Dependencies Across Sites

We discuss here the relationship between dependencies among

random variables versus independent random variables sharing an

unknown but common parameter. Parameter here may represent design

commonality, component commonality or operating system commonality.

In particular consider the random variables i'I1 ' 2'" "'F 'M

serving as indicators for occurrence or non-occurrence of cata-

strophic events over the M sites. Suppose all failures at these

sites share a common component type and manufacturer. Let q repre-

sent the probability that the design of that component type by that

manufacturer is defective. Then q - P(Y = 1), where Y = 1, or 0,

respectively, if the design is defective, or not. Now suppose

. for y = 1
P(fi = 1lY = y ) =

f! for y = 0,
I

where n.3i i!, for some i. An expert reliably testifies as to the
1 1

likelihood p that a randomly selected site would experience a mal-

function over the horizon time. Then

p = p(TI = iY = i)P(Y = 1) + P(TI = lY = 0)P(Y = 0)

M M
- qM F 7r. + (l-q)M F I!

i=l I i=1 1

where I is the index of a randomly selected site.

Lemma A.1: The random 'ariables TV' 2' ... ' TM are conditionally

tWe assume here for simplicity that the component of interest repre-
sents the only commonality among the sites.
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independent given Y.

Proof: Immediate. n
Lemma A.2: The random variables TIF 2' TM are unconditionally

dependent.

Proof: Suppose ni 7 jr. Then

e(=1=+ irjr(l - q)
lY2  1) = 2q + ;(l - q)

76 wIq + wI(l - q) = p('I = 1). fl

Since we are not in general aware of the value of Y, i.e., whet-her

or not a design error has been made, we are in the situation of

Lemma A.2.

The above analysis can be easily generalized to the case of

multiple common components or subsystems by letting Y be a binary

vector of dimension equal to the number of distinct shared com-

ponents. Obviously in practice, the specification of a complex

system in this fashion is essentially impossible.

A.2 Bounds for PC

A proof of the upper and lower bounds of (2.2) for the general

case of Tl' Y2' "' eM following an arbitrary multivariate distri-

bution follows.

Theorem A.1: Suppose TI' T2' "' TM are zero-one random variables
M

with 7t = Prob(. = 1) being given. Let X = T i' and Pc p(X > 1).
1 1 i=l' --(

Then

M
(A.1) max 7i. <P < min( 7 ,1)

l<i<M i - c - i=li
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Moreover, these bounds are attainable, whenever EX < 1.

Proof: Let F (t) denote the joint c.d.f. of Ti' ... 1 TM, where the

th marginal c.d.f. is Fi(t i) = 0, for ti < 0; = pi, for 0 < ti < 1;

and = 1, otherwise. Then for all t

M
(A.2) max(0, E F.(t.) - (M - 1)) < F() < min {F.(ti)}.

i=l 1 1 1l<<M 1 1

(See Dall'Aglio.) Note that Pc = 1 - F (0), so that (A.2) immedi-

ately implies (A.1). The attainment of the lower bound of (A.1)
M

follows from the fact that min {F. (ti ) is a c.d.f. If E ,.< 1,
l<i<M 1 irl

the upper bound of (A.1) is attainable because the lower bound of

(A.2) is itself a c.d.f. (see Dall'Aglio or Conway (Theorem 5.2;

1979) fl

Another way of viewing Theorem A.1 is to define 'Pi = {F (t):

for all i, P(T. = i) = T. and P(. = 0) = 1 - . Then thinking1 1 "1

of Pc as a function of F (t) E I' (A.1) provides attainable upper

and lower bounds on Pc as F (t) varies over 0i" Now suppose that

full marginal information is not known and all the information that

- M
is available is M E 7. = p. Define D2 = {FT(t): fnr il i,

i=] . M 2 It,
P(i = 0) + P(T. = 1) = 1, and (M ') P(. ]) = p). C]early1 i=l 1

01 0 2" Then as F (t) ranges over 42F obtainable upper and lower

bounds for Pc are given by (2.3).
cI
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Appendix B

STOCHASTIC ORDERING AND CONTINUITY OF ADJUSTMENT PROCESS

B.1 Stochastic Ordering of Exponential Family Distributions

Definition R.l (E.g., Lehmann (p. 73, 1959)). A family of cumula-

tive distribution functions {F I is stochastically increasinq

(decreasing) in T if T < T' implies F (x) > (N F_ ,(x) for all x.

It follows from Lehmann (1959; Corollary 2, p. 70 and Lemma
[x] Ti

2, p. 74) that F (X) E C(T)h.e , x < M, is stochastically
i=01

increasing in T. A more direct proof follows below, but first we

require a simple probability lemma of interest in itself.

Lemma B.1. Let X be a random variable taking on value i with proba-

bility w,, where i = 0, ... , M. Then for all k,

k
(P.]1) (EX) (P(X < k)) > T iwa.

i=O .

Proof: For any k < [EX], where [-] denotes the greatest inteqer
k

function, we have E (i - EX)(. <. 0 so that (R.1) is imTnedi.te.
i=0 k.

Suppose that there exists k > [FYi such that Y7 (U - o0. > 0.

However, because

M k

0 E H (. - EX) W. 7 (j. - RX)~ r ( M

we obtain an immediate contradiction concerning the existence of

such a k.

Theorem B.1. Let p(i,T) = c(r)h e , . = 0, ... , M and let F(k,T) =
k
7 p(i,T). Then F(k,T) jr ccroasina function in r for all 1 = 0,

... M.

Proof: Note that s Jec:' , iT) --r" (T) /C(T)

... .... ..... .' .. . --- ' .. . ... ....i III .. .. ...F. ... .rr -- I
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dF(,r- 'c'Th e T1+ C i(T) h. e Ti

-r (,X) (P (X <_ k)) Y i P(X )1
J1: 0

where X is a random variable with p.d.f. p(i,T). The result is now

immediate from Lemma B.l1. fl

B.2 Sensitivity of the Adjusted Viewpoint to Variation in the

Initial Viewpoint

'riv-(ycrnm P.2. For every 0 < V< M, the function taking p into pA

Prrn'- Let {pIbe a seavonce of vie-wpoints convnrging to thn vi' ow-

A 7\
lin: e nred to show fl,:,i lin P1, P . -. 11 (hop h.. hM

c'-rir-' (in thn sense of Pofini tic'n 3.1) i-hn finite, oyrpenfntial f~lmi.ly

fr z-,( ic ~A, afncld -t T(71) ~n" T th u-c-i respeeti.vo p,)ra-

nS . i mlnV': r' T, -v( < Then i 5t. follows

~re~r~f.rnnon ~n1 ~h, ''~. P'~e-i'A ~ '~-~:lm =h. No 1-e

-A h 7J I-.

1- T
CT , 11 j1)h.

(T 0 v >( (p- F.,,rprn )n- Tn;!+- flf'7'1, Tcru,,tinnr (A. )
NT

-ion n' h h) 1-h n imn! c it Turc~t ion i-heorc-m (o .. P rt.o (1A;.

'6 )) T(n 0 ,UIrJ r,- (!I,_) T (h) Peof-e 1-h -rv e',. rorc-or

,, -yT~'j) 7'--. ' l ' I-r' trr -h(e nre ernc 'i
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A ( mT A(h (j))

liY ~ li(i h Mr hier hki) h h(j) ek -1

M A.k

TA (h (i)) mTA( jh h(i) e E h h()e
j=0

-p A(i), for all i =0, .. ,M. f
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Appendix C

MERGING COEQUAL EXPERT JUDGMENTS

C.1 The General Case

Lemma C.I describes which viewpoints are "informationally

equidistant" from two adjusted viewpoints determined by a decision

maker from two coequal expert judgments. Lemma C.2 utilizes Lemma

C.l:to choose among these viewpoints that viewpoint "closest" to

the decision maker's viewpoint.

Lemma C.I. Suppose that p1 and P2 are given, respectively, by
lu lu

Ti
f(i, 1 ) and f(i,T 2), where T 1 < T 2 and f(i,T) = c(-r)hie , i = 0,

M
... , M. Let P(T) = E if(i,T). Then a necessary and sufficient

i=0
condition that p* = (p*, ... , p*) satisfy I(p*;pl) = l(p*;p 2) is

M M = %*P)i

that E ip = E(i(T)), where T is a random variable having uniform
i=0 I

distribution on (-rl, T2 ).

Proof: If I(p*;pl) = I(p*;p2), then

M p* M p
(C.1) E p*J £n(-l-) E pt * n(Pi)

i=0Pi .i i=0P 1 2i

where Pli' P2i' and pt are, respectively the (i+l)st entries of

Pt' P2' and p*. Equation (C.1) and the form of f(i,T) imply

M M
i 0P[.n c(TI) + Zn h. + Tii] = i-pt[kn c(T2 ) + kn hl + i ] '

i=0 i=0

which, in turn, implies

M(C.2) ip =-i

(. i * = -(T -Tl) (£n c(T2 ) - £n c(T ))
i=ati i st

By differentiating with respect to T the equation
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M
F C(T)h.e T 1,

i=0 1

we obtain

(C.3) p(T) = -(dc(T)/dT)/c(-),

and, hence, from (C.3), we may represent

(C.4) £n c(T) = _fT i(s)ds + K,

where K is a constant. Substituting (C.4) into (C.2), we obtain

M T

(C.5) Z i Pi =2 (s)ds,
i=0 21

and the result now follows. n
Lemma C.2. Suppose that p, pl and P2 are given, respectively, by

f(i, 0 ), f(i, i), and f(i,-r 2 ), where T1 < T2 and f(iT) = c(T)h e
M

i = 0, ... , M. Let II(T) = T i f(i,T). Then
i=0

min I(q;p)
q:I(q;p l )=I(q;p 2 ) -v u

occurs uniquely at q = p*, where p* = f(i,T*) and T* is determined

by 1J(T*) = E(j(T)), where T is a random variable having a uniform

distribution on (T1,t2).

Proof: This follows immediately from Lemma C.1 and Result 3.2. r

A more specific representation for 1(T*) in terms of the deci-

sion maker's viewpoint can be obtained. Let p = (p0 , ... , pM
) be

the viewpoint with p0 > 0 and p1 > 0. Sampson and Smith (1979,

(4.2)) showed that the finite exponential family containing p can

be parametrized by
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(C.6) f(i,T) C(T)p01pi(p 0/pl) eTi

M
where C(T) is chosen so that F f(i,T) = 1. When T = £n(Pl/P0) ,

i=O
f(i,T) = pi. Again noting that P(T) = -C'(T)/C(T), and using

(C.6), we can rewrite (C.5) for computational purposes as

M

p(T*) = TI 2( i = 0

2 1  M
T 1  E (p0/pl)p i esi

i=O i

C.2 The Binomial Case

Now suppose that the decision maker has a binomial viewpoint,

i.e.,

M i M-i
(C.7) pi = (M)i (I - 7)

Then (C.7) can be parametrized as

MT M IT
f(i,T) = e (M)e

where T = £n(/(l-7)). If we parametrize by p = M7, then T -

Zn(/(M- 1)). Suppose that we have two expert opinions p, < 12'

with corresponding T1 < T 2 . By Lemma C.1, the merged opinion i*

is given by

U* = (T 2  T 1  fT2  Me s ds

T 1 + e
1 2

=-ln[(l + e 2)/(l + e I

Substituting in terms of Pit P2' we have

* =M - Pi---) M - l] -
*= M in[ ](9[n[ M

M- 1J2 I M- 2
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C.3 Merging Rare Judgments

We now consider rare judgment approximations; that is, the

case where P and U 2 are small. Sampson and Smith (1979, Equation

(5.2) show that

(C.8) u(T) = eT + E(T),

where lir E(-)/u(T) = 0.
T--o

Let T1 < T2 correspond to expert judgments V, < P2 Then by

(C.5) and (C.8),

* = a + ,

where a = (T2-(T - - e 1 and 0 (T2-Tl)- 12 e(s)ds.
T 1

Observe that c(s) = P(s) - es is the difference of two con-

tinuous functions and hence is also continuous. Therefore, e(s)

attains its maximum value over [TlT 2]. Let (T*1 2 ) = max E(T).

Then 
TF

0 < (T2mT ) -  C (T*2) (T2_T = C(T

It follows that

a = o(VI2),

because as T 2 " -

T 2 (l2 eT 2
e < 12 0, as U2  0.

2 '2 2 - 1 e2 2
e e

Now, by (C.8), p(T)/eT - 1 as T - , and since T(P) = V

(see Sampson and Smith (1979, Equation (4.3))), we obtain that

lANN--
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/e ( )  1 as u - 0, which implies that T(p) = vi + o(P). Hence,

o(1 2 ) o(U I1 )
S P2 + 0(" 2 ) - p ,I - 0( 1 )) - (e U2 - e 1I).

Note that

1 IU 2 - 1 - - O(U 2 ) U2 - vl

-112 ( - n 112 2 £ni1 ) 2+ 0 ( 2 ) (.np 2-ZnU 1 )

0, as 12 + 0,

so that it now follows that

112 -U 1  +£n 112 - £n 1 2
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Appendix D

COMPUTING pA BASED UPON V AND P

Brockett, et al have shown that the problem of minimizing the

Kullback-Liebler discrimination subject to constraints on the proba-

bility vector obtained can be re-expressed as an unconstrained con-

vex mathematical program. Specializing their results to our case

results in the following mathematical program:

z 2-1 m izl1(P) Minimize y = eZ Z pie - Uz i - z2

zlz 2  i=O

Letting the solution to (P) be z*, z*, we obtain

iz* + z*-lP Pie1 2 i = 0, ..., M.

The program (P) may be quickly and easily solved by any unconstrained

mathematical programming algorithm. For example, IMSL (International

Mathematical and Statistical Library) has a FORTRAN callable sub-

routine ZXMIN which will solve (P) after defining the function y

as a user supplied FORTRAN subroutine. For problems where a large

number of pi are positive or v is very small additional care must

be taken to avoid computational numerical difficulties.

Another approach to computing pA makes use of certain rela-

tionships between finite exponential families containing a viewpoint

p and the moment generating function corresponding to p. Throuch

this approach, the optimization problem becomes one of finding the

unique root of a specific equation. One of the benefits of this

approach is that for small M, the problem can be solved reasonably

readily on a programable hand calculator.
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Lemma D.I. Suppose p = (p 0 ' "' pM), P0 > 0, p1 > 0, is the

decision maker's viewpoint and let f(i,T), given by (C.6) be the

finite exponential family containing p. Then the unique T 0 which

satisfies =(T0 W 0 is T o = s0 - Zn(p 0/Pl), where s0 is the solu-

tion to

(C.7) m'(s) - 0m(s) = 0,

where m(s) is the moment generating function of p.

Proof: The equation P(T) = 10 can be rewritten as
M

(C.8) P0 E i pi(p0 /pl)ieTi = 011 c(f)i=0

-1 m

m
Since m(T)/pl e

Since m() E Pie , (C.8) can be rewritten as
i=0

m'(T + £n(p 0 /pl)) = P 0 m(T + £n(p 0 /pl))

and the result then follows.
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